

Exame Final Nacional de Biologia e Geologia Prova 702 | 1.ª Fase | Ensino Secundário | 2017

11.º Ano de Escolaridade

Decreto-Lei n.º 139/2012, de 5 de julho

Duração da Prova: 120 minutos. | Tolerância: 30 minutos. 16 Páginas

VERSÃO 1

Indique de forma legível a versão da prova.

Utilize apenas caneta ou esferográfica de tinta azul ou preta.

Não é permitido o uso de corretor. Risque aquilo que pretende que não seja classificado.

Para cada resposta, identifique o grupo e o item.

Apresente as suas respostas de forma legível.

Apresente apenas uma resposta para cada item.

As cotações dos itens encontram-se no final do enunciado da prova.

Nas respostas aos itens de escolha múltipla, selecione a opção correta. Escreva, na folha de respostas, o grupo, o número do item e a letra que identifica a opção escolhida.

Nos termos da lei em vigor, as provas de avaliação externa são obras protegidas pelo Código do Direito de Autor e dos Direitos Conexos. A sua divulgação não suprime os direitos previstos na lei. Assim, é proibida a utilização destas provas, além do determinado na lei ou do permitido pelo IAVE, I.P., sendo expressamente vedada a sua exploração comercial.

GRUPO I

As fontes hidrotermais submarinas e a descarga fluvial de metais de origem continental disponibilizam os metais necessários à génese de depósitos polimetálicos, que ocorrem em fundos oceânicos e cujas distribuição e espessura são influenciadas pelas correntes oceânicas.

Entre esses depósitos salientam-se as crostas ferromanganesíferas, formadas a profundidades de 400 a 4000 metros, em zonas de substrato de rocha consolidada. Estas crostas contêm cobalto, níquel, telúrio e terras raras, suscetíveis de serem explorados. As terras raras são elementos químicos com particular interesse, por serem usados, por exemplo, no fabrico de computadores e de turbinas eólicas.

Nos fundos oceânicos, ocorrem ainda outros materiais rochosos com interesse económico e científico, como os sulfuretos polimetálicos.

Perante a escassez atual no fornecimento de 14 metais estratégicos, a era da mineração submarina está prestes a começar.

Na Figura 1, estão representados os limites da Plataforma Continental¹ (em aprovação) e da Zona Económica Exclusiva (ZEE)² portuguesas e a localização esquemática de crostas, de sulfuretos polimetálicos e de campos hidrotermais, nomeadamente, *Lucky Strike* e *Moytirra*.

Baseado em J. Palma e I. Pessanha, «Depósitos ferromanganesíferos de oceano profundo», *Brazilian Journal of Geophysics*, Vol. 18 (3), 2000 e em www.emepc.pt (consultado em novembro de 2016)

Notas:

- Plataforma Continental conceito jurídico definido no Artigo 76.º da Convenção das Nações Unidas sobre o Direito do Mar (CNUDM); este conceito não corresponde ao conceito geológico de plataforma continental.
- ² Zona Económica Exclusiva (ZEE) refere-se aos direitos de soberania para a exploração, conservação e gestão dos recursos naturais vivos e não vivos na coluna de água e no espaço aéreo sobrejacente (CNUDM, Artigo 56.°).

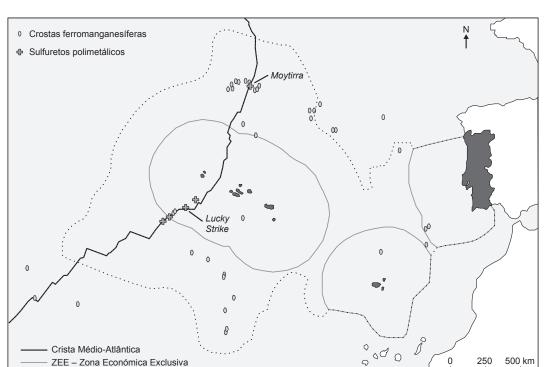


Figura 1 – Localização de recursos minerais submarinos, no contexto das áreas de intervenção de Portugal

Limite exterior da Plataforma Continental

1.	O campo hidrotermal <i>Moytirra</i> encontra-se numa zona de, e a fonte de metais para a génese das crostas ferromanganesíferas que aí ocorrem é predominantemente
	(A) elevado fluxo térmico continental
	(B) baixo grau geotérmico marinha
	(C) baixo fluxo térmico marinha
	(D) elevado grau geotérmico continental
2.	Considere as seguintes afirmações, referentes aos recursos submarinos.
	I. Um depósito polimetálico submarino considera-se uma reserva se estiver a baixa profundidade.
	II. As crostas polimetálicas depositam-se sobre substrato basáltico.
	III. As terras raras são usadas em tecnologia para a produção de energia «verde».
	(A) I é verdadeira; II e III são falsas.
	(B) Il é verdadeira; I e III são falsas.
	(C) Il e III são verdadeiras; I é falsa.
	(D) I e III são verdadeiras; II é falsa.
3.	Na zona do campo hidrotermal <i>Lucky Strike</i> , o substrato é formado por uma rocha
	(A) mesocrática com origem num magma rico em sílica.
	(B) mesocrática com origem num magma pobre em sílica.
	(C) melanocrática com origem num magma rico em sílica.
	(D) melanocrática com origem num magma pobre em sílica.
4.	A crusta oceânica apresenta densidade e percentagem de magnésio do que a crusta continental.
	(A) menor menor
	(B) maior maior
	(C) maior menor
	(D) menor maior
5.	Estudos geofísicos mostram que a velocidade das ondas sísmicas
	(A) aumenta quando estas passam da crusta para o manto litosférico.
	(B) aumenta quando estas passam da litosfera para a astenosfera.
	(C) diminui quando estas passam do núcleo externo para o núcleo interno.
	(D) diminui quando estas passam da astenosfera para a mesosfera.

- 6. A investigação dos fundos oceânicos mostrou que as rochas vulcânicas
 - (A) existentes nas proximidades das fossas oceânicas são as mais recentes.
 - (B) recolhidas nas proximidades das zonas de rifte são as mais antigas.
 - (C) com a mesma idade têm polaridades magnéticas diferentes.
 - (D) mais recentes apresentam polaridade magnética normal.
- **7.** Numa zona onde ocorre a colisão de uma placa oceânica com uma placa continental, a morfologia do fundo oceânico resultante é uma
 - (A) depressão muito profunda e alongada.
 - (B) área extensa, com declives muito suaves.
 - **(C)** zona de vale, limitada por falhas normais.
 - (D) cadeia extensa de montanhas submersas.
- **8.** Ordene as expressões identificadas pelas letras de **A** a **E**, de modo a reconstituir a sequência de acontecimentos que pode dar origem a uma crosta polimetálica.
 - A. Transporte de metais pelos rios até ao mar.
 - **B.** Meteorização de rochas em ambiente continental.
 - C. Acumulação de óxidos e hidróxidos de Fe e Mn na coluna de água.
 - D. Circulação de metais nas águas de escorrência.
 - E. Precipitação de compostos metálicos sobre o substrato oceânico.
- **9.** Explique em que medida a extração dos depósitos polimetálicos submarinos envolve problemas tecnológicos e ambientais.

Na sua resposta, apresente um exemplo de um problema tecnológico e um exemplo de um problema ambiental.

GRUPO II

Na produção agrícola, podem ser utilizados diversos inseticidas, como o Diclorvos (DDVP) e a Deltametrina (DTM). Estas classes de inseticidas afetam o sistema nervoso, causando a paralisia dos insetos. Os inseticidas da classe do DDVP impedem a ação de enzimas, tais como as esterases, que são necessárias à degradação dos neurotransmissores. Já os inseticidas da classe da DTM atuam nos canais de sódio do axónio, retardando a repolarização do neurónio.

Com o intuito de avaliar a toxicidade de fórmulas comerciais do DDVP e da mistura deste com a DTM, foi desenvolvido um estudo de toxicidade em peixes da espécie *Danio rerio*.

Métodos utilizados e resultados obtidos

- 1 Foram utilizados peixes com um peso médio de 5 g.
- 2 Os peixes foram mantidos em água a uma temperatura de 25 °C e pH 7,0. Foi fornecido a todos os peixes o mesmo tipo de alimento.
- 3 Posteriormente, os peixes foram colocados, durante 48 horas, em aquários de 3 L. Para a determinação da toxicidade dos inseticidas, variou-se, em alguns dos aquários, a concentração de DDVP ou da mistura de DDVP com DTM.
- 4 Parte dos resultados obtidos consta nas Tabelas 1 e 2.
- 5 Nos testes efetuados nos grupos de controlo, não se registaram mortes.

Tabela 1 – Determinação da toxicidade do inseticida DDVP em peixes da espécie *Danio rerio*

 Concentração DDVP (μg L⁻¹)
 Mortes (%)

 0,010
 0

 0,020
 0

 0,040
 100

Tabela 2 – Determinação da toxicidade da mistura dos inseticidas DDVP e DTM em peixes da espécie *Danio rerio*

Concentração DDVP (µg L ⁻¹)	Concentração DTM (μg L ⁻¹)	Mortes (%)			
0,005	0,020	100			
0,010	0,040	100			
0,020	0,080	100			

Baseado em D. Trevis *et al.*, «Toxicidade aguda do praguicida organofosforado Diclorvos e da mistura com o piretróide Deltametrina em *Danio rerio* e *Hyphessobrycon bifasciatus*», *Boletim do Instituto de Pesca*, São Paulo, Vol. 36, n.º 1, pp. 53-59, 2010

- 1. No estudo descrito, a variável dependente foi
 - (A) o tempo de exposição aos inseticidas.
 - (B) o peso médio dos peixes.
 - (C) a taxa de mortalidade dos peixes.
 - (D) a concentração dos inseticidas.

2.	Refira a diferença das condições a que foram submetidos os grupos de controlo, relativamente àquelas a que foram submetidos os restantes grupos.
3.	Os resultados do estudo mostram que
	(A) a DTM, relativamente ao DDVP, provoca a morte de um maior número de animais.
	(B) o efeito do DDVP depende da concentração em que é administrado.
	(C) o aumento do teor de DDVP torna mais rápida a morte dos animais.
	(D) a eficácia da mistura de DDVP com DTM depende das concentrações destas substâncias.
4.	Os inseticidas da classe da DTM mantêm os canais de sódio, o que contribui para a diferença de cargas entre as duas faces da membrana do axónio.
	(A) abertos reduzir
	(B) abertos aumentar
	(C) fechados aumentar
	(D) fechados reduzir
5.	O DDVP e a DTM interferem
	(A) apenas na componente química do impulso nervoso.
	(B) apenas na componente elétrica do impulso nervoso.
	(C) na componente química e na componente elétrica do impulso nervoso, respetivamente.
	(D) na componente elétrica e na componente química do impulso nervoso, respetivamente.
6.	O transporte de iões a favor do gradiente de concentração, através da membrana celular, é
	(A) não mediado e ativo.
	(B) mediado e ativo.
	(C) não mediado e passivo.
	(D) mediado e passivo.
7.	Nos peixes, as trocas gasosas entre o organismo e o meio ocorrem por
	(A) difusão direta, através de estruturas internas.
	(B) difusão indireta, através da superfície corporal.
	(C) difusão direta, através de estruturas não vascularizadas.
	(D) difusão indireta, através de superfícies muito vascularizadas.

8. Faça corresponder cada uma das descrições relativas a estruturas intervenientes na transmissão do impulso nervoso, expressas na coluna **A**, à respetiva designação, que consta na coluna **B**.

COLUNA A	COLUNA B			
	(1) Axónio			
(a) Extensão do neurónio que recebe o impulso nervoso.	(2) Corpo celular			
(b) Zona de comunicação entre dois neurónios.	(3) Dendrite			
(c) Região do neurónio que contém o núcleo.	(4) Nódulo de Ranvier			
	(5) Sinapse			

- 9. Considere os dados das Tabelas 1 e 2 e as informações seguintes:
 - a utilização isolada de 0,078 μg L⁻¹ de DTM provoca 50% de mortes em *Danio rerio*;
 - as enzimas esterases catalisam a hidrólise da DTM;
 - o DDVP impede a ação das esterases.

Explique a diferença na percentagem de mortes quando se utilizam os inseticidas isoladamente e quando se utilizam em conjunto.

Na sua resposta, apresente os resultados que permitem confirmar a sua explicação.

GRUPO III

A litologia e o registo fóssil da Bacia do Baixo Tejo permitem inferir que a região passou por diferentes fases climáticas e que, como resultado de variações do nível médio do mar e de movimentos tectónicos, foi tendo diferentes configurações paleogeográficas.

No Miocénico, de 23 a 5 milhões de anos (Ma), acompanhando a deriva da placa africana para norte, em relação à Península Ibérica, algumas rochas, que tinham sido depositadas na Bacia Lusitânica durante o Jurássico (de 199 a 145 Ma) e o Cretácico (de 145 a 66 Ma), sofreram deformação e deram origem às serras do Maciço Calcário Estremenho, a norte, e à serra da Arrábida, a sul.

Mais tarde, há cerca de 5 Ma, formou-se uma vasta planície emersa, entre Lisboa e a serra da Arrábida, onde se instalou o sistema fluvial precursor do Tejo atual, constituído por múltiplos canais que atravessavam a península de Setúbal, desaguando alguns na zona onde hoje se situa a Lagoa de Albufeira.

Posteriormente, entre 1,7 e 1,5 Ma, a subsidência¹ da bacia de sedimentação e a atividade da falha do Vale Inferior do Tejo, entre Vila Nova da Barquinha e o Barreiro, e, mais a jusante, da falha do Gargalo do Tejo, a oeste de Lisboa, com direção E-O, provocaram a reorganização da rede hidrográfica do Tejo.

A Figura 2 apresenta um mapa geológico simplificado da região.

Baseado em J. Pais *et al.*, «Litostratigrafia do Cenozoico de Portugal», *Ciências Geológicas: Ensino e Investigação*, Vol. I, pp. 365-376, 2010

e em A. Cruces *et al.*, «A Geologia no Litoral – Parte I: Do Tejo à Lagoa de Albufeira», *Geologia no Verão 2002 – Guia de Excursão*, 2002

Nota:

¹ subsidência – movimento lento de descida do fundo de uma bacia de sedimentação.

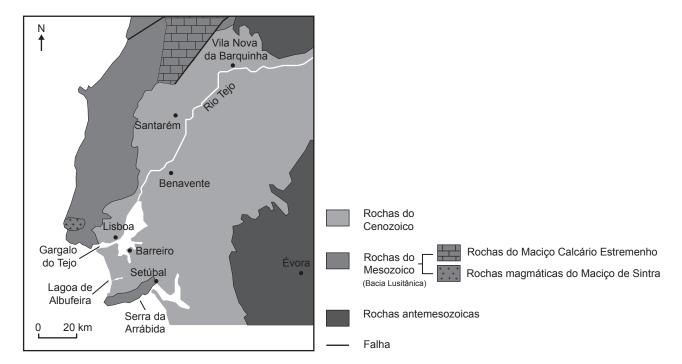


Figura 2 – Mapa geológico simplificado da Bacia do Baixo Tejo

1. Na Bacia do Baixo Tejo, foram encontrados fósseis de rinoceronte com cerca de 16 Ma, o que permite deduzir que, nessa época, a região corresponderia a uma savana.

A dedução enunciada na afirmação anterior baseia-se no Princípio

- (A) do Catastrofismo.
- (B) da Sobreposição dos Estratos.
- (C) da Identidade Paleontológica.
- (D) do Atualismo.
- 2. Considere as seguintes afirmações, referentes à evolução da Bacia do Baixo Tejo.
 - I. Há cerca de 5 Ma, alguns dos canais do sistema fluvial desaguavam numa zona situada a sul da foz atual.
 - II. Parte dos sedimentos que se encontram na península de Setúbal resultaram da erosão de rochas que afloravam no interior da Península Ibérica.
 - **III.** Na península de Setúbal, encontram-se calhaus rolados do granito de Sintra, o que indicia que, quando os mesmos se depositaram, o Tejo já desaguava na zona do «Gargalo».
 - (A) III é verdadeira; I e II são falsas.
 - (B) I é verdadeira; II e III são falsas.
 - (C) Il e III são verdadeiras; I é falsa.
 - (D) I e II são verdadeiras; III é falsa.
- 3. As serras do Maciço Calcário Estremenho formaram-se no
 - (A) Cenozoico, num contexto tectónico distensivo.
 - (B) Cenozoico, num contexto tectónico compressivo.
 - (C) Mesozoico, num contexto tectónico distensivo.
 - (D) Mesozoico, num contexto tectónico compressivo.
- **4.** Em 1909, ocorreu um sismo na região de Benavente. Com os dados disponíveis, é de supor que este sismo tenha estado associado à falha
 - (A) interplaca do Vale Inferior do Tejo.
 - (B) intraplaca do Vale Inferior do Tejo.
 - (C) interplaca do Gargalo do Tejo.
 - (D) intraplaca do Gargalo do Tejo.

5.	. Atualmente, em algumas zonas do litoral oeste de Portugal, verifica-se um acentuado da l de costa, relacionado com a do nível médio da água do mar.	linha
	(A) avanço subida	
	(B) avanço descida	
	(C) recuo subida	
	(D) recuo descida	

- 6. As barragens construídas no rio Tejo contribuem para
 - (A) controlar o risco de cheias ao longo do vale.
 - (B) aumentar a carga de sedimentos junto à foz.
 - (C) conservar os ecossistemas fluviais a jusante.
 - (D) diminuir a sedimentação nas zonas a montante.
- **7.** Faça corresponder cada uma das descrições relativas a recursos minerais não metálicos, expressas na coluna **A**, à respetiva designação, que consta na coluna **B**.

COLUNA A	COLUNA B			
	(1) Argila			
(a) Sedimentos ricos em quartzo, utilizados no fabrico de vidro.	(2) Calcário			
(b) Detritos finos utilizados no fabrico de cerâmica.	(3) Mármore			
(c) Rocha metamórfica, não foliada, usada na construção civil.	(4) Xisto			
	(5) Areia			

8. Explique o processo de formação das grutas existentes nas serras do Maciço Calcário Estremenho.

GRUPO IV

O estudo do ciclo celular tem implicações práticas no campo da saúde humana. O cancro, por exemplo, é uma doença que resulta, entre outros aspetos, do facto de a célula perder o controlo da sua divisão.

As células possuem diversos mecanismos de regulação e de controlo do ciclo celular. A Figura 3 representa esquematicamente um ciclo celular, cujos mecanismos de regulação estão relacionados com determinados genes e com complexos proteicos citoplasmáticos, formados pela ligação de dois tipos de proteínas: as CDK e as ciclinas. Em todas as células eucarióticas, a progressão do ciclo celular é controlada pelas sucessivas ativação e inativação de diferentes complexos ciclina-CDK. A ativação e a inativação destes complexos estão dependentes da transcrição e da proteólise (lise proteica), respetivamente.

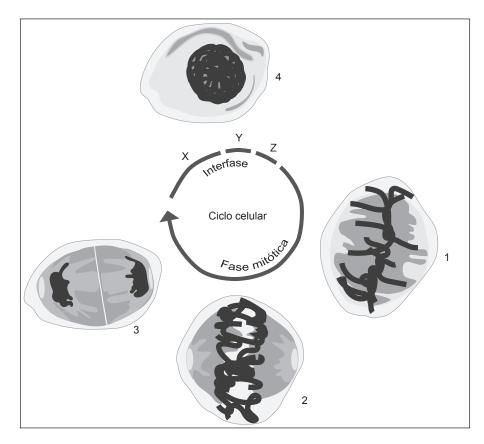


Figura 3 – Ciclo celular

Baseado em J. Perdigão e A. Tavares, «Ciclo celular e novas terapias contra o cancro (o ano do Nobel)», *Boletim de Biotecnologia*, 70, 2001

Nota – As letras X, Y e Z representam fases do ciclo celular e os números de 1 a 4 identificam células.

- No ciclo representado, se a quantidade de DNA na fase X for Q, então as quantidades de DNA no núcleo da célula, na fase Z, e no núcleo de cada uma das células, no final da fase mitótica, serão, respetivamente,
 (A) Q e 2Q.
 (B) Q/2 e Q.
 (C) 2Q e Q.
 (D) Q e Q/2.
- 2. Refira a fase da mitose em que se encontra cada uma das células identificadas com os números 1 e 2 na Figura 3.
- 3. Na fase assinalada com a letra
 - (A) Z, ocorre a replicação conservativa do DNA.
 - (B) Z, ocorre a replicação semiconservativa do DNA.
 - (C) Y, ocorre a replicação conservativa do DNA.
 - (D) Y, ocorre a replicação semiconservativa do DNA.
- **4.** As ciclinas são proteínas que determinam a progressão do ciclo celular. A ciclina B promove o desenvolvimento da fase mitótica, nomeadamente a desorganização do invólucro nuclear e a condensação dos cromossomas.

Caso a proteólise da ciclina B de determinada célula não aconteça, é de prever que

- (A) a célula não consiga completar a mitose.
- **(B)** se verifique uma paragem do ciclo celular no período S.
- (C) não se formem complexos ciclina-CDK indutores de mitose.
- (D) ocorra a reorganização do invólucro nuclear.
- 5. Durante a transcrição da informação genética ocorre
 - (A) a intervenção da RNA polimerase.
 - (B) a formação de péptidos simples.
 - (C) a intervenção dos ribossomas.
 - (D) a adição de nucleótidos de timina.
- **6.** Numa perspetiva darwinista, a resistência de uma determinada população de animais ao cancro poderia ser explicada
 - (A) pelo aparecimento de genes que controlam o ciclo celular.
 - (B) pela reprodução diferencial de animais resistentes ao cancro.
 - (C) pela seleção natural de animais que sofreram mutações.
 - (D) pelo tratamento sistemático da doença num indivíduo.

- 7. Ordene as expressões identificadas pelas letras de A a E, de modo a reconstituir a sequência de acontecimentos na meiose.
 - A. Separação de bivalentes.
 - **B.** Troca recíproca de segmentos de cromatídeos.
 - **C.** Emparelhamento de cromossomas homólogos.
 - D. Divisão de centrómeros.
 - **E.** Formação de dois núcleos haploides.
- **8.** Explique de que modo a exposição a determinados tipos de radiação, como os raios UV, pode contribuir para o aumento da possibilidade de desenvolver cancro, considerando que algumas proteínas contribuem para o controlo do ciclo celular.

FIM

COTAÇÕES

Cruno						Item				
Grupo				C	otação	(em po	ontos)			
I	1.	2.	3.	4.	5.	6.	7.	8.	9.	
1	5	5	5	5	5	5	5	5	10	50
II	1.	2.	3.	4.	5.	6.	7.	8.	9.	
11	5	5	5	5	5	5	5	5	10	50
III	1.	2.	3.	4.	5.	6.	7.	8.		
111	5	5	5	5	5	5	5	15		50
137	1.	2.	3.	4.	5.	6.	7.	8.		
IV	5	5	5	5	5	5	5	15		50
TOTAL										200